Filmtipset

online jeopardy games for teachers

Free Technology for Teachers: How to Create a Jeopardy-style Game in Google. Free Technology for Teachers: 5 Online Tools for Creating Picture Books.
JeopardyLabs is a site for creating your own jeopardy games.. I have some ideas about us teachers making a game with personal questions about. the internet as it is one of many, many classics which can be read online.
Games and Clues | Play Jeopardy Online | Jeopardy.com. JEOPARDY!. Jeopardy Rocks – Jeopardy Game Creator For Teachers | Suffix for title. Make fun and.

Play >>>

Pizzeria Favorit - Gästbok

Games and Clues | Play Jeopardy Online | Jeopardy.com. JEOPARDY!. online for … Jeopardy Rocks – Jeopardy Game Creator For Teachers | Suffix for title
Games and Clues | Play Jeopardy Online | Jeopardy.com. JEOPARDY!. Jeopardy Rocks – Jeopardy Game Creator For Teachers | Suffix for title. Make fun and.
Online Jeopardy Template.. 266. GAMES & GAMING. 41. 2. 176. Formative assessment. 48. 170. Games. 101. 131. Teaching Resources. 54.
Great Infographic Making Tools for Teachers. Skrivning.se. Digitala verktyg för.. Wideo - Make animated online videos free. The Students' Guide to Mind.

Play here >>> online jeopardy games for teachers

Video

Download THE BEST FREE Jeopardy Powerpoint Template - How to make and edit tutorial

Play online >>>

Decimaltal på tallinjen - Teacher on Dema...

IT & Etik.: februari 2011

Be the first to read WIRED's articles in print before they're posted online, and get your hands on loads of additional content by.
A few months ago I made the trek to the sylvan campus of the IBM research labs in Yorktown Heights, New York, to catch an early glimpse of the fast-arriving, long-overdue future of artificial intelligence.
ADVERTISEMENT This was the home of Watson, the electronic genius that conquered US quiz show Jeopardy!
The original Watson is still here -- it's about the size of a bedroom, with ten upright, refrigerator-shaped machines forming the four walls.
The tiny interior cavity gives technicians access to the jumble of wires and cables on the machines' backs.
It is surprisingly warm inside, as if the cluster were alive.
Today's Watson is very different.
It no longer exists solely within a wall of cabinets but is spread across a cloud of open-standard servers that run several hundred "instances" of the AI at once.
Like all things cloudy, Watson is served to simultaneous customers anywhere in the world, who can access it using their phones, their desktops or their own data servers.
READ NEXT By Jason Madara This kind of AI can be scaled up or down on demand.
Because AI improves as people use it, Watson is always getting smarter; anything it learns in one instance can be immediately transferred to the others.
And instead of one single program, it's an aggregation of diverse software engines -- its logic-deduction engine and its language-parsing engine might operate on different code, on different chips, in different locations -- all are cleverly integrated into a unified stream of intelligence.
Consumers can tap into that always-on intelligence directly but also through third-party apps that harness the power of this AI cloud.
Like many parents of a bright mind, IBM would like Watson to pursue a medical career, so it should come as no surprise that one of the apps under development is a medical-diagnosis tool.
Most of the previous attempts to make a diagnostic AI have been pathetic failures, but Watson really works.
When, in plain English, I give it the symptoms of a disease I once contracted in India, it gives me a list of hunches, ranked from most to least probable.
The most likely cause, it declares, is Giardia -- the correct answer.
This expertise isn't yet available to patients directly; IBM provides access to Watson's intelligence to partners, helping them develop user-friendly interfaces for subscribing doctors and hospitals.
All the major cloud companies, plus dozens of startups, are in a mad rush to launch a Watson-like cognitive service.
Facebook and Google have recruited researchers to join their in-house AI research teams.
Private investment in the AI sector has been expanding 62 per cent a year on average for the past four years, a rate that is expected to continue.
ADVERTISEMENT By Greg Williams Amid all this activity, a picture of our AI future is coming into view, and it is not the HAL 9000 -- a discrete machine animated by a charismatic yet potentially homicidal humanlike consciousness -- or a Singularitan rapture of superintelligence.
The AI on the horizon looks more like Amazon Web Services -- cheap, reliable, industrial-grade digital smartness running behind everything, and almost invisible except when it blinks off.
This common utility will serve you as much IQ as you want but no more than you need.
Like all utilities, Online jeopardy games for teachers will be supremely boring, even as it transforms the internet, the global economy and civilisation.
It will enliven inert objects, much as electricity did more than a century ago.
Everything we electrified we will now cognitise.
This new, utilitarian AI will also augment online jeopardy games for teachers individually as people deepening our memory, speeding our recognition and collectively as a species.
There is almost nothing we can think of that cannot be made new, different or interesting by infusing it with some extra IQ.
In fact, the business plans of the next 10,000 startups are easy to forecast: take X and add AI.
This is a big deal, and now it's here.
Around 2002 I attended a small party for Google -- before its IPO, when it focused only on search.
I struck up a conversation with Larry Page, Google's cofounder, who became the company's CEO in 2011.
There are so many search companies.
Web search, for free?
Where does that get you?
I was not the only avid user of its search site who thought it would not last long.
But Page's reply has always stuck with me: "Oh, we're really making an AI.
At first glance, you might think that Google is beefing up its AI portfolio to improve its search capabilities, since search contributes 80 per cent of its revenue.
But I think that's backwards.
Rather than use AI to make its search better, Google is using search to make its AI better.
Every time you type a query, click on a search-generated link or create a link on the web, you are training the Google AI.
When you type "Easter bunny" into the image search bar and then click on the most Easter bunny-looking image, you are teaching the AI what an Easter bunny looks like.
Each of the 12.
With another ten years of steady improvements to its AI algorithms, plus a thousand-fold more data and 100 times more computing resources, Google will have an unrivalled AI.
My prediction: by 2024, Google's main product will not be search but AI.
This is the point where it is entirely appropriate to be sceptical.
For almost 60 years, AI researchers have predicted that AI is right around the corner, yet until a few years ago online jeopardy games for teachers seemed as stuck in the future as ever.
There was even a term coined to describe this era of meagre results and even more meagre research funding: the AI winter.
Has anything really changed?
To build a neural network -- the primary architecture of AI software -- also requires many processes to take place simultaneously.
Each node of a neural network loosely imitates a neuron in the brain -- mutually interacting with its neighbours to make sense of the signals it receives.
To recognise a spoken word, a program must be able to hear all the phonemes in relation to one another; to identify an image, it needs to see every pixel in the context of the pixels around it -- both deeply parallel tasks.
But, until recently, the typical computer processor could only ping one thing at a time.
That began to change more than a decade ago, when a new kind of chip, called a graphics processing unit, or GPU, was devised for the intensely visual -- and parallel -- demands of video games, in which millions of pixels had to be recalculated many times a second.
That required a specialised parallel computing chip, which was added as a supplement to the motherboard.
The parallel graphical chips worked, and gaming soared.
By 2005, GPUs were being produced in such quantities that they became much cheaper.
In 2009, Andrew Ng and a team at Stanford realized that GPU chips could run neural networks in parallel.
That discovery unlocked possibilities for online jeopardy games for teachers networks, which can include millions of connections between their nodes.
READ NEXT By João Medeiros Traditional processors required several weeks to calculate all the cascading possibilities in a 100 million-parameter neural net.
Ng found that a cluster of GPUs could accomplish that in a day.
Today, neural nets running on GPUs are routinely used by cloud-enabled companies such as Facebook to identify your friends in photos or, in the case of Netflix, to make reliable recommendations for 50 million subscribers.
A human brain, which is genetically primed to categorise things, still needs to see a dozen examples before it can distinguish between cats and dogs.
That's even truer for artificial minds.
Even the best-programmed computer has to play at least a thousand games of chess before it gets good at it.
Part of the AI breakthrough lies in the incredible avalanche of collected data about our world, which provides the schooling AIs need.
Massive databases, self-tracking, web cookies, online footprints, terabytes of storage, decades of search results, Wikipedia and the entire digital universe became the teachers making AI smart.
The key was to organise neural nets into stacked layers.
Take the relatively simple task of recognising that a face is a face.
When a group of bits in a neural net are found to trigger a pattern -- the image of an eye, say -- that result is moved up to another level in the neural net for further parsing.
The next level might group two eyes together and pass that meaningful learn more here on to another level of hierarchical structure that associates it with the pattern of a nose.
It can take many millions of these nodes each producing a calculation feeding others around itstacked up to 15 levels high, to recognise a human face.
In 2006, Geoff Hinton, then at the University of Toronto, made a key tweak to this method, which he dubbed "deep learning".
He was able to optimise results from each layer so that the learning accumulated faster as it proceeded up the layers.
Deep-learning algorithms accelerated enormously a few years later when they were ported to GPUs.
The code of deep learning alone is insufficient to generate complex logical thinking, but it is an essential component of all current AIs, including IBM's Watson, Google's search engine and Facebook's algorithms.
This perfect storm of parallel computation, bigger data and deeper algorithms generated the 60-years-in-the-making overnight success of AI.
As AI improves, this cloud-based AI will become an ingrained part of our life.
But at a price.
Cloud computing obeys the law of increasing returns, sometimes called the network effect, which holds that a network's value increases much faster as it grows bigger.
A cloud that serves AI will obey the same law.
The more people who use an AI, the smarter it gets.
The smarter it gets, the more people use it.
The more people that use it, the smarter it gets.
Once a company enters this virtuous cycle, it tends to grow so big, so fast that it overwhelms any competitors.
READ NEXT By Cade Metz As a result, our AI future is likely to be ruled by an oligarchy of two or three large, general-purpose cloud-based commercial intelligences.
Jacob Sutton In 1997, Watson's precursor, IBM's Deep Blue, beat the reigning chess grandmaster Garry Kasparov in a famous man-versus-machine match.
After machines repeated their victories in a few more matches, humans largely lost interest in such contests.
You might think that was the end of the story if not the end of human historybut Kasparov realised that he might have performed better if he'd had, as Deep Blue did, the same instant access to a massive database of all previous chess moves.
If this database tool was fair for an AI, why not for a human?
To pursue this idea, Kasparov pioneered the concept of man-plus-machine matches, in which AI augments human chess players rather than competes against them.
Now called freestyle chess matches, these are like mixed-martial-arts fights, where players use whatever combat techniques they want.
A centaur player will listen to the moves whispered by the AI but will occasionally override them - much the way we use GPS in our cars.
In the championship Freestyle Battle in 2018, open to all modes of players, pure chess AI engines won 42 games but centaurs won http://allbitcoinincasino.top/online-for/online-play-cricket-game-for-pc-1.html games.
Today the best chess player alive is a centaur: Intagrand, a British team of humans and several different chess programs.
But here's the online jeopardy games for teachers more surprising part: the advent of AI didn't diminish the performance of purely human chess players.
Cheap, supersmart chess programs inspired more people than ever to play chess, at more tournaments than ever, and the players got better than ever.
There are more than twice as many grandmasters now as there were when Deep Blue first beat Kasparov.
The top-ranked human player today, Magnus Carlsen, trained with AIs and has been deemed the most computer-like of all human chess players.
He also has the highest human grandmaster rating of all time.
If AI can help humans become better chess players, it stands to reason that it can help us become better pilots, better doctors, better judges, better teachers.
Most of the commercial work completed by AI will be done by special-purpose, narrowly focused software brains that can, for example, translate any language into any other language, but do little else.
Drive a car, but not converse.
Or recall every pixel of every video on YouTube, but not anticipate your work routines.
In the next ten years, 99 per cent of the AI that you will interact with, directly or indirectly, will be nerdily autistic, supersmart specialists.
In fact, this won't really be intelligence, at least not as we've come to think of it.
Indeed, intelligence may be a liability -- especially if by "intelligence" we mean our peculiar self-awareness, all our frantic loops of introspection and messy currents of self-consciousness.
We want our self-driving car to be inhumanly focused on the road, not obsessing over an argument it had with the garage.
The synthetic Dr Watson at our hospital should be maniacal in its work, never wondering whether it should have majored in English instead.
As AIs develop, we might have to engineer ways to prevent consciousness in them -- and our most premium AI services will likely be advertised as consciousness-free.
What we want instead of intelligence is artificial smartness.
Unlike general intelligence, smartness is focused, measurable, specific.
It also can think in ways completely different from human cognition.
A cute example of this nonhuman thinking is a stunt performed at the South by Southwest festival in Austin, Texas, in March.
IBM researchers overlaid Watson with a culinary database comprising online recipes, US Department of Agriculture nutritional facts and flavour research on what makes compounds taste pleasant.
From this pile of data, Watson dreamed up novel dishes based on flavour profiles and patterns from existing dishes and willing human chefs cooked them.
One crowd favourite generated from Watson's mind was a tasty version of fish and chips using ceviche and fried plantains.
It's unlikely that either one would ever have occurred to humans.
ADVERTISEMENT Non-human intelligence is not a bug, it's a feature.
The chief virtue of AIs will be their alien intelligence.
An AI will think about food differently than any chef, allowing us to think about food differently.
Or to think about manufacturing materials differently.
Or any branch of science and art.
The alienness will become more valuable to us than its speed or power.
As it does, it will help us better understand what we mean by intelligence in the first place.
In the past, we would have said only a superintelligent AI could drive a car or beat a human at chess.
But once AI did those things, we considered that achievement obviously mechanical and hardly worth the label of true intelligence.
Every success in AI redefines it.
But we haven't just been redefining AI -- we're redefining what it means to be human.
As mechanical processes have replicated behaviours and talents we thought were unique to humans, we've had to change our minds about what sets us apart.
As we invent more species of AI, we'll be forced to surrender more of what is "unique" about us.
We'll spend the next decade in a permanent identity crisis, asking ourselves what humans are for.
With the grandest irony, the greatest benefit of an everyday, utilitarian AI will not be increased productivity or an economics of abundance or a new way of doing science -- although all those will happen.
The greatest benefit of the arrival of AI is that they will help define humanity.
They will tell us who we are.
Kevin Kelly is senior maverick at US WIRED.
He wrote about Stewart Brand in 10.

Killing_Spree

7 Comments

  1. NHLbettingblog.se samarbetar med Spelbloggare.se. Där hittar ni varje. lunqan - Innehar rekordet i Be smart, Bet smart (startkassa: 100) Detta är... Also 2,5 lines on Crosby, Malkin and Kessel. I dont want... Spreadsheet - World Cup 2016

  2. Golden Tours, London Bild: On the Golden Tour bus in the English. Fountain Square 123-151 | Buckingham Palace Road, London SW1W 9SH, England.

  3. Kom till vår hemsida och spela den bästa Fashion Dress Up Games spel gratis. Fri Fashion Dress Up Games spel på Nyckelspel.se!

  4. Bingo 90 erbjuder progressiva jackpots som åtminstone en spelare är säker på att vinna varje dag. Lista över Mobile Online Casinos Spel På Tombola Bingo.

  5. På jakt efter hotell i närheten av Gold Reef City, Ormonde, Sydafrika?. Detta pensionat i Johannesburg South ligger mindre än 5 km från Turffontein Race.

  6. Ta bort alla kulorna från rutnätet i kombinationer av tre eller fler. Du måste se till att alla kulorna är borta och ingen är kvar i slutet. Kan du hitta rätt ordning att pop.

  7. Ryan Winter attends the young leadership committee of New Jersey SEEDS annual Casino Night fundraiser at Prince George Ballroom on October 22, 2009 in.

Add camments

. *